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ABSTRACT

Predictive coding (PC) is a theory in cognitive/computational neuroscience which explains cortical
functions with a hierarchical process of minimizing prediction errors. PC provides a neuronal scheme
(through neurons or neural populations) for implementing Bayesian inference in the brain. PC
recovers the hidden state of the world from sensory input (passive inference) and selects actions
to reach the goals the agent has (active inference). Since its discovery, PC has been found to be a
unifying theory explaining more and more cognitive functions, including perception, attention, and
action planning. In this paper, we review and discuss how PC can be used also as a powerful tool
to understand working memory (WM), an essential function for executive control. Specifically, we
sought answers in the literature to the following questions: 1. How is WM maintained and updated?
2. What is the relationship between attention and WM and how do they interact? 3. Why does WM
have limited capacity? and 4. Why is WM hierarchical? Modelling WM in PC frameworks provides
alternative explanations to some long-standing questions about WM and may help with resolving the
conflicts between WM theories. We expect such alternative explanations can help future researchers,
such as in developing computational tools to improve treatments for brain disorders and more robust
artificial working memory in artificial intelligence.
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1 Introduction

Working memory (WM) has been at the centre stage of psychology and neuroscience for decades. While numerous
models of WM have been developed over the years, there are still many unresolved debates and mysteries about how
WM is maintained and updated, why it has limited capacity, and why it has hierarchical representations, i.e. where
different levels of abstraction emerge [Luu and Stocker| [2021]], Hasson et al.|[2015]], Honey et al.|[2012], Brady and
Alvarez| [2011]], Lerner et al.| [2011], Hasson et al.| [2008]. Meanwhile, predictive coding (PC) has recently been
identified as a promising unifying theory for explaining different functions of the brain [Millidge et al.,2021al [Smith
et al., [2022]], such as perception, learning and action planning. The functional role of WM links to PC through
many related concepts (e.g. executive control, perception, attention and action planning), upon which PC has already
established relatively mature theories (see Figure[I)). We expect therefore for PC to be able to help with delineating
some similar concepts from WM, answering some long-standing questions about WM and promoting a more formal
understanding of WM. In this work, we draw connections between the literature to seek support for the hypothesis that
WM can be explained by PC. Details of the literature and what we consider support for this hypothesis are described in
this paper.

*Corresponding author Email: mengli.feng @student.uva.nl


https://orcid.org/0000-0001-7690-0417

Can working memory be explained by predictive coding? A PREPRINT

+——— Overlapping , .
——= Related N .
e—> Causal * collective !

Focus nodes

Figure 1: Links between working memory and predictive coding.

This graph illustrates how WM and PC are connected through many key concepts across multiple different disciplines.
On the left we have the core concept working memory ‘WM’ and on the right we have the core concept predictive
coding ‘PC’. Nodes that related to the two terms are placed around them according to the principle of proximity. The
nodes highlighted in colours are the ones that are focused, with the pink ones being cognitive functions and green
ones being computational constructs. The grey nodes are loose nodes, which are less focused. Three different types
of edges are used to show the relationship between nodes. The ones with two bars at the ends denotes nodes that
have conceptual overlapping; the ones with two circles at the ends denotes nodes that are strongly related; the ones
with one circle at an end and an arrow at the other end denotes causal relations. The dotted circle is used to show a
collective of concepts that belong to the same category. In this case, it shows that working memory, short-term memory
and long-term memory belongs to the category ‘memory’. This network does not exhaust all possible connections
but provides a literature-searching strategies. 1. One can use the related or overlapping nodes to substitute the core
concepts. For example, one can search for “modelling WM with Bayesian inference” instead of “modelling WM with
PC”. 2. One can look into specific aspects of the link between the core concepts. For example, one can search for the
links between WM and PC in terms of attention.

1.1 Four objectives
In this literature review, we investigate whether predictive coding (PC) can help with answering four research questions:

1. How is working memory maintained and updated?

2. Why does working memory have limited capacity?

3. What is the relationship between attention and working memory and how do they interact?

4. Why is working memory hierarchical?
We attempt to answer these questions with the literature using a theoretical perspective. We put more effort into
analyzing literature that have the most established models available on these topics, while supplementing them with

other relevant studies and evidence. An auxiliary objective of this literature review was to find the ingredients to better
formalize WM in PC framework for modelling work in the future. This was achieved by summarizing current modelling
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attempts and trying to be specific about modelling details when answering the research questions. Note that we sought
to introduce the mathematical concepts and derivations in this paper as intuitively as possible. For those readers who
have difficulties understanding these concepts, we refer to readers to the original papers cited around the math and
derivations. We expect that mathematical formalization will help experimental work of working memory and predictive
coding in the future.

2  Working Memory (WM)

Although WM has drawn attention since the 1890s [Yu and Fristonl 2014, many psychological and neuroscientific
questions about WM remain unanswered or under debate. We do not intend to exhaust all the details in each topic,
but instead give an overview of those topics and provide perspectives for future work, as guided by the four questions
above.

Working memory (WM) can be understood as short-term memory (STM) with an emphasis on the functional role of
maintaining useful information for executive control, which is the ability to carry out goal-directed behaviour [|[Cowan,
2009\ |Oberauer and Lin, [2017] Miller et al., 2018, |(Oberauer, [2019, Trapp et al., 2021} |[Friedman and Robbins), 2022]].
WM provides an interface for perception, long-term memory and action [Baddeley, [2003]] and plays an important role
in comprehension, learning, planning and reasoning [Cowan, [2014]]. The importance of WM in human cognition is
apparent from human behavior in patients with deficits in WM, such as in behavioral and brain disorders like ADHD
Ortega et al.|[2020], schizophrenia [Eryilmaz et al.,|2016]], and dementia Jahn|[2013]]. WM is also very important in the
field of artificial intelligence to ensure robust performance Zheng et al.|[2016].

In a typical WM task, a participant needs to keep a piece of information in mind in order to respond to a stimulus after
a delay period. Figure [2]shows some components that are commonly seen in a WM task. Often, a working memory
experimental trial starts with an initial cue to remember a stimulus, and ends with a target cue, where the participants
need to recall what was shown at the beginning [Berlot and de Lange}, [2022]] or decide whether it is the same as the initial
cue [Parr and Friston, [2017, |Yu and Friston, [2014]. Sometimes, there is an anticipatory cue shown before the initial
cue, to set up an expectation, e.g. whether there will be an update. In the middle of an experimental trial, sometimes a
retro-cue showing partial or all the information about the initial stimuli [Parr and Friston, [2017]] or a new cue [Yu and
Friston, 2014] is presented. In addition, noise can be presented at any point in time to disturb WM [Feng et al., |[2023]].
During a task, WM is anticipated, initiated, disturbed by noise, updated and recalled. The temporal complexity of WM
tasks can test how WM functions in a world with uncertainties.

One of the essential functions of WM is to retain information accurately and update information flexibly. Robust WM
maintenance is very important to cope with noisy environments. While it keeps information on hold, it also needs
to adapt to new incoming evidence. So one classical question about WM is how it balances the maintenance of old
information and the assimilation of new information [[Yu and Friston, [2014].

Attention and working memory share many similarities, both psychologically [Oberauer, |2019] and neuroscientifically
[Mayer et al.,2007]. Functionally, they are both part of executive control that supports many other cognitive functions
and conscious awareness. Those functional overlaps are accompanied by shared neural substrates [Knudsen, 2007].
Although they are seen as closely related [Oberauer, [2019]], how to formally delineate them is not often discussed.

There are many studies that use PC to explain attention [[Yu and Friston, 2014, |Feldman and Friston, |2010, [Pauszek,
2019, Hohwy, [2012, Ransom et al., |2016]. They provides an opportunity for me to inspect attention and working
memory in the same theoretical and modelling framework and ask whether WM can be delineated from attention and
how they interact. This can potentially help us to reach a clearer understanding of the functional and computational role
of WM.

Only a limited number of items can be held in WM. It was estimated experimentally that humans can keep four items at
once in their STM [Cowan, 2000]]. The limit of WM capacity was mechanistically accounted for by information decay
or interference [Barrouillet and Camos} 2009} (Oberauer, [2019], ‘subcycles’ in the brain oscillation [Lisman and Idiart,
1993] or the refresh rate of synaptic weight change [Miller et al., |[2018]].

It has been pointed out that the capacity limit of WM might be related to the capacity limit of attention |Palmer| [[1990].
Another study showed that dopamine-related heterogeneity reflects individual differences in WM capacity [Cools and
D’Esposito, |2011]]. Considering dopamine is a neural signature of predictive processing, PC might bring new insights
into why WM has a capacity limit.

Both psychological and neuroscientific research show evidence of the hierarchical structure of WM [Luu and Stocker,
2021, Berlot and de Langel| 2022} Hasson et al.,2015]], meaning WM can maintain information at different levels of
abstraction. Why and how WM is hierarchically constructed may be answered by hierarchical PC framework.
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Figure 2: an illustration of WM tasks.

The graph shows possible elements in a trial of a working memory task during behavioral experiments. A trial can start
with an anticipatory cue, which is a cue indicating what might happen next. Then an initial cue might be presented,
which is the cue that the participants need to remember and to be tested at the end. Afterwards, there is normally a delay
period, which is a period the participants are presented with no cues. During the delay period, noise stimuli are often
presented to create distractions that are irrelevant to the task. After the delay period, a retro-cue might be presented,
which is a cue that provides additional information about the initial cue. A new cue may also be presented, which is a
cue to be tested that is different from the initial cue. After the retro-cue or the new cue being presented, there is a period
of update, for WM to be updated after the retro-cue/new cue. Finally, a target cue will be presented, with a typical
testing question being ‘is the cue the same as the initial cue?’

3 Predictive Coding (PC)

The classical Predictive Coding (PC) algorithm proposes that cognitive functions are realised through the minimization
of prediction errors in the brain, the difference between the actual sensory input (e.g. from a stimulus) and the predicted
sensory input[Aitchison and Lengyel, 2017]],

prediction error = input — prediction )

The term ’predictive coding’ was first introduced in the paper by Rao and Ballard! [1999]. It introduced a model
of visual processing where feedback connections from higher to lower areas carry predictions of the signals in the
lower area, while the feedforward connections carry the difference between the prediction and actual signals in the
lower areas. Over the years, this simple idea has formed a unifying theory that explains many cortical functions in
computational and cognitive neuroscience [Millidge et al.| [2021al |Clark, 2013, |Friston, 2017]. It explains perception as
a process of inferring hidden states of the world, and explains learning as a process of updating the internal model of
the world. It also explains adaptive behaviours as the process of inferring action plans, and atfention as the precision of
inferred states [[Feldman and Fristonl, 2010]. Both neuroimaging and neuro-computational studies have been providing
supporting evidence to this theory [Cullen, [2020, Isomura et al., 2022} |Caucheteux et al., 2023} Mikulasch et al.,[2023].

3.1 Predictive coding as an implementation of Bayesian inference

Bayesian inference uses Bayes theorem (Equation[2)) to infer the hidden state of the world or latent cause (denoted as s)
given an observation/sensory input (denoted as o).

plo] 9p(s) o

(s 0) = 2028

In this framework, the latent state can be inferred by first calculating the posterior probability distribution p(s | o) of the
latent states, then finding the state that results in the maximum value of the posterior. This would result in the so-called
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Maximum A Posteriori (MAP) estimate, the mode of the posterior distribution that results in the maximum posterior
value.

Aitchison and Lengyel| [2017]] describe the relationship between Bayesian inference and predictive coding as “comple-
mentary”, in the sense that the latent cause s provided by Bayesian inference can be used to calculate the prediction
of the current sensory input as the expected value of sensory input o given the latent cause s. The prediction is thus
mathematically defined by the following integral to calculate an expected value E with the subscript denoting what we
are integrating with respect toﬂ

prediction = E,(o|5) [0] = /op(o | s)do 3)

This prediction can then be used to calculate the prediction error to correct the weights for the neural activity encoding
possible states. This is done in order to perform Bayesian inference to infer the state given an observation [Spratling,
2017]]. SeeRao and Ballard|[[1999] for a detailed algorithm for updating beliefs through prediction errors. The reciprocal
process combining Bayesian inference and predictive coding is introduced as Bayesian predictive coding in [Aitchison
and Lengyel, 2017].

We do not make the claim that Bayesian inference is predictive coding. |Aitchison and Lengyel [2017]] make the point
that predictive coding is not the only neural arithmetic to implement Bayesian inference, and Bayesian inference is not
the only computational goal that predictive coding serves.

Formally, predictive coding could instead be seen as a type of variational Bayesian inference [Zhang et al.|[2019]l, where
the posterior distribution is approximated instead of directly solved calculation in the brain. This approximation can
be achieved by minimizing the difference between the estimated posterior ¢(s) and the true joint distribution p(o, ).
We can therefore approximate the true posterior through an iterative algorithm, without worrying about the intractable
marginal distribution of sensory inputs p(o) due to the high dimensionality of the representation of an observation (e.g.
many pixels in an image). E] A thorough mathematical derivation can is given by [Millidge et al.[[2021a].

3.2 Predictive coding for active inference

Fassive inference passively infers the state of the world based on observations. Active inference (AC) is an extension of
passive inference in that AC also infers the actions which lead to the observations, in order to prevent surprises (e.g.
being hit by a car while riding a bike through an intersection). Because of the close link between goal-directed action
planning and WM, we expected active inference could be very useful in explaining WM.

For readers to better understand the mathematical formulation of active inference, we would like to first introduce the
concepts of entropy and relative entropy. Entropy is a measurement of expected surprise for a random variable X,
that is E[— log P(x)], where surprise is defined as the logarithm of the inverse of a probability of an event, such that

log(m) = —log P(z). Thus, the less probable the event, the more surprising it is. Relative entropy measures
P(z)

the similarity between two statistical distributions (E[P (log 6] )]), which can be understand as the surprise caused

by the difference between the two distribution. In equations, it is often written as D (¢||p) for the similarity of
distributions ¢ and p. Another name for relative entropy is KL divergence.

The core of active inference is the concept of variational free energy I (VFE, see Equation[d). Active inference (AC)
minimizes variational free energy F'. The idea of ‘free energy’ was borrowed from thermodynamics, where free energy
refers to the usable energy that can do work. In thermodynamics, minimising free energy drives the system towards
equilibrium. Similarly in active inference, minimising free energy also drives the system towards equilibrium, where
the approximated distribution is equal to the true distribution [Friston| 2008]]. In mathematical terms, Variational free
energy F' is the relative entropy between the true joint distribution of sensory inputs o and states s given a policy (,
also known as selected actions) p(o, s | 7) and the approximate posterior distribution of states given selected actions
q(s | ™) (Equation . Note that sensory inputs o are not included in the approximate posterior distribution ¢ of the true
posterior distribution p(s, o | 7). This is because the estimate ¢ is obtained by an iterative optimisation procedure and
not actually dependent on observations [Smith et al.,2022]. Minimizing F therefore enables us to acquire an estimated
posterior.

Note that an expected value is analogous to a weighted average if sensory input o were discrete.

Jintractability issue: an observation can be multidimensional such as an image having many pixels. for each dimension/pixel, there
can be N different states, then for D dimensions, we have N states, which explore exponentially with the number of dimensions,
making the computation impossible
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- als|m)
Fﬂ- = Eq(s‘ﬂ.) |:1H p(O, S I 7T):| (4)
F=E {ln q(sﬂ} —Inp(o) )
q(s) p(s| o, m)

After a rearrangement of the equation, F' can be understood as complexity minus accuracy (see Equation [6). The
first term measures the difference between the prior and posterior belief. A larger change of beliefs to account for an
observation entails a greater complexity. The second term measures the expected likelihood of observations given
beliefs about the states. The accuracy of the inference increases with increasing expected likelihood. This can be further
reformulated into entropy minus energy, which is in the end a term of linear combinations of squared prediction errors
[Millidge et al., 2021a]. Because F can is also the upper bound of negative log evidence (see Inequality[7), minimizing
F also leads to the minimization of expected surprise (i.e. entropy). A more extensive mathematical derivation can be
seen in|Smith et al.| [2022].

F = Dgila(s [ o,m)||p(s | m)] = Eq(sjm[Inp(o | s)] ©)
Complexity Accuracy
plo,s | m plo,s | m
—Inp(o) = —InEy(4m {(q(sjr))] < —Eg(s,m) [hl ((1(s||77))} =F @)

3.3 Expected free energy

While free energy is a measurement for the present, expected free energy (EFE) G is a measure for the future. It is
the free energy calculated with respect to the expected observations (Equation [8)). This means calculating future VFE
based on beliefs about future observations, which enters the expectation operator F, as a random variable [Millidge
et al., 2021b} [Smith et al.} 2022]], leading to the main difference from Equation 4| To accommodate preferred future
observations, the equation can be rearranged into@], where C' denotes preference and p(o|C') represents the probability of
a preferred observation. This is often referred as pragmatic value [Smith et al.||2022], that is to guide action selection to
achieve the desired outcome/observation. To minimize G, one needs to select actions that can produce targeted/preferred
future observations. The expected value reaches its maximum when ¢(o|7) approaches p(o|C'). Intuitively, this means
assigning larger probabilities to larger values of p(o|C') and vice versa.

_ q(s | )
] ®
G~ _Eq(o,s\ﬂ) [lnq(s | 0, ﬂ-) —In Q( 8 | 71')] - Eq(o\ﬂ) [h’lp(O ‘ C)] ©))

information gain (epistemic value) preference (pragmatic value)

The idea is to get the posterior belief on each policy based on how much the expected observations under a policy will
match the preferred observation. The first term in equation [0} on the other hand, is the difference between the posterior
and prior beliefs, which can be understood as the information gain, often referred as epistemic value [Smith et al.|
2022]|. To minimize G, the agent, that is the animal/person who initiates the action, must select a policy to maximize
the information gain. This arrangement shows that active inference maximises both the epistemic and pragmatic values
of the predictions.

EFE can again be reformulated in two parts in Equation[I0] The left term is exploitative, used to maximise reward by
matching the expected observations with the preferred observations. It is also referred to as risk or expected complexity.
The right term is exploratory, used to reduce the uncertainty/ambiguity of predictions of the outcome given a stateé
which has a similar function to the first term in Equation [9]entailing epistemic affordance. (I0). The decomposition
in Equation [0 and Equation [T0]is very useful later in the discussion in Section [5] for understanding the relationship

*H{[p()] is a notation for entropy. Higher entropy leads to a higher dispersion of the probability distribution. The dispersion can
be seen as a measure of uncertainty. To reduce the dispersion, one can try making observations that will lead to most evidence given
a state
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between WM and goal-directed behaviour (Sect. [4.1)), the relationship between WM and attention (Sect. [7) and how
WM capacity is constrained by the trade-off between complexity and accuracy (Sect. [5.3).

Gr = Drilg(o | m)llplo| C)]+ Egqsm[Hlp(o | 5)]] (10)

exploitative (Reward) exploratory (Uncertainty)

While classical PC defines prediction errors as the difference between predicted sensory input and actual sensory input,
there are two types of prediction errors in active inference, one for state prediction and one for outcome prediction
[Smith et al., [2022]. The state prediction error refers to the discrepancy between the predicted and actual internal states
while the outcome prediction error referees to the discrepancy between expected and received outcomes/observations.
The minimization of those two prediction errors is realised through the minimization of EFE and VFE. This formation
allows for active inference to form realistic neuronal messaging schemes. In active inference, Dopamine is modelled as
a hyper-parameter () regulating the prior confidence about EFE estimates. It is also referred to as the precision of EFE,
which is changed when the observation is inconsistent with the EFE.

3.4 Markov decision processes

Active inference is often applied to a type of generative model called Markov decision process (MDP) (see Figure[3) to
model a wide range of psychological phenomena to do with temporal processing in the brain [Paletta et al., 2004, |Smith
et al.,[2022} [Kuperberg) 2021]]. There are often four main ingredients in a typical MDP: 1. states (s), 2. actions (a), 3.
rewards (r) and 4. transition probabilities (p). In an MDP (see Figure 3)), the agent makes a sequence of actions. An
action at each step maps to a state of the process, which leads to a reward. The state from the current step transits to a
state in the next step with a transition probability p. Note that MDP has a property of Markov processes that the actions
and rewards are only directly related to the current states, not the future or the past ones.

O-O-0
O-EO-®

Figure 3: Markov Decision Process. a: action; s: state; : reward; p: transitional probability. The graph shows a unit of
a markov decision process, where the agent makes a sequence of actions a; and as. An action at each step maps to a
state of the process s, which leads to a reward r. The state from the current step transits to a state in the next step with a
transition probability p.

An MDP for active inference (see Figure d) is a partially observed MDP, where the agent does not have complete access
to the true state of the environment and needs to rely on observations to infer the current state. This corresponds to
real-life situations where we are uncertain about the state of the world and need to infer how likely it is to be in a state
based on observations [Smith et al.|[2022]. Because of this setting, the process became non-deterministic and the state
variables are probabilistic. The outcome of the states are observations, instead of rewards, which the algorithm tries
to optimise to match the preferred observations. On top of that, actions, which have deterministic relationships with
the states, are substituted by policies, that choose an action for each time step. They affect the transition probabilities
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between states. To summarize, in a typical active inference MDP, observations/action outcomes depend on the hidden
states, which depend on policy and the previous state (Figure ).

1

Figure 4: The generative model for Markov Decision Process with active inference.

m: policy, a sequence of actions to achieve a desired outcome; D: prior; s: state posterior; B: transition probability;
A: likelihood; o: observation. Different from a vanilla MDP, the MDP in this graph is partially observed, meaning
the agent’s knowledge about the states is accumulated through observations. Here we can see that the states lead to
observations with likelihood A. The initial state s; is co-determined by the prior D and the policy 7 and is updated by
observation 0. The second state s, is co-determined by the initial state with transitional probability B and the policy,
and it is updated by observation o

° >

To update the state variable in this framework, the following equation applies:

Srr=0(InBr 15 .—1+1n BE’TS,HH +1In ATOT) (11)

Here S is the probability distribution of states given an action 7 at a time step 7. B is transitional probabilities from
either the past or the future. A is the likelihood probabilities of an observation given a state. o () is the softmax function
to transform/normalise the term inside into a probability distribution. The input to the softmax function is a sum such
that: the first term In B 1.5 - is the prior from the previous time point 7 — 1; the second term In BETS,,JH is

the prior from the future time point 7 + 1; the third term In AT o, is the likelihood of the observation at the current time
point 7.

Active inference in MDP can be summarised in Figure 5] During state inference, we can infer the current state given the
observation through minimizing VFE, the difference between the estimated posterior and the generative model. We can
then predict the current observation given the inferred state and compare it to the actual observation, with which we can
update the generative model. During policy inference, we first infer the future states based on the current state, from
which we calculate the EFE for each future state. Then we select the policy that minimizes the sum of the EFE for all
time points that we aim to predict. Note that the policy we select will, in turn, affect the state inference for the next
round.

3.5 Generalised predictive coding

Generalised predictive coding put the active inference model in the context of dynamical systems, where the hidden
states are presented by their instantaneous first and higher-order derivatives (generalised motions) [ Yu and Friston, 2014}
Hijne, |2020]. This framework is relevant here because of its emphasis on temporal trajectories, therefore mentioned in
some studies to situate WM under PC. Readers who would like to know more can refer to [Friston et al.|[2011]]

To perform hierarchical inference, more layers are added to the simplest model mentioned above, where the state
variable at the lower layer would serve as the input to the higher layer (Figure[6). This enables the model to build up
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Figure 5: Active inference in Markov Decision Process (MDP).

o: observation; s: state; VFE: variational free energy (see Equation[6); EFE: expected free energy (see Equation[10).
This diagram illustrates how states and policies are inferred during active inference using a generative model p(o, s) =
p(o | s)p(s). On the state inference side (left panel), the agent receives an observation o and minimizes VFE to infer
the current state s. This process involves comparing the posterior estimate with the generative model. The inferred
state is then used to predict the current observation 6, which enables updates to the generative model based on the
mismatch with the actual 0.On the policy inference side (right panel), the inferred state s is used to generate predicted
future states s; for future time steps ¢t = 1, ..., 7. These states are used to predict future observations, from which the
expected free energy EFE, is computed for each ¢. The agent then selects the policy that minimizes the cumulative
expected free energy over the time horizon, i.e., min Zthl EFE,. This leads to a new observation o, and restarts the
cycle of inference.w

inferences on top of each other and allows for different levels of abstraction [Spratling, [2017} Dora et al.||2021]] and
timescales [Smith et al.;2022]. Hierarchical PC has been shown to explain neural activities along cortical hierarchy in
the human brain during image recognition and speech processing [Dora et al.,|2021| |Caucheteux et al., 2023].

4 Bridging WM and PC

To remind the readers, we plan to explore whether PC can help with answering four research questions about WM.
They are:

1. How is working memory maintained and updated?

2. What is the relationship between attention and working memory and how do they interact?

3. Why does working memory have limited capacity?
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Figure 6: Hierarchical predictive coding. L: level; x: input; y: prediction; e: error. The subscripts indicate levels. The
circles are prediction/input neurons and the triangles are error neurons. This figure shows three levels of inference,
where the state y at a lower level serves as an input to a higher level. At each layer, the error neurons receive prediction
from above and input from below and use them to compute prediction errors. It then sends the errors to the higher layer
to update the prediction

4. Why is working memory hierarchical?

To answer the questions, we first introduce the predictive nature of WM and then walk through two examples of PC
models that incorporate WM. This should familiarize readers with the necessary background knowledge on model
structures and experimental settings. Then we discuss the questions one by one in Sections We review models
and experimental evidence that answer the research questions.

4.1 WM and predictions

Predictions are at the centre of PC framework. One of the most obvious links between WM and PC is how WM is
involved in making predictions or maintaining predictions. We would like to make a clarification of what is meant
by ‘predictive’ and ‘prediction’ in PC. In a broader context, making a prediction might be understood as making an
assumption about what will happen in the future. In PC, however, predictions do not put time stamps on the inferred
states. They simply mean assumptions about incoming observations based on an internal model the agent has about
the world p(o, s). The prefix ‘pre-’ can be interpreted as preceding the comparison with the real sensory input. Being
‘predictive’ means being dependent on the inferred states of the internal model. Under this definition of ‘predictive’,
perception is predictive in the sense that current sensory inputs are being predicted. WM can be seen as an extension

10
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of perception that also predicts the future, hence anticipatory [[Yu and Friston, 2014], or the past, hence retrospective.
Furthermore, such prediction is subject to the influence of action planning.

WM may be involved in making predictions in two ways [Trapp et al.,|2021]]. One is acting as a prior for sensory inputs
p(o). From this perspective, it can be understood as long-term memory (LTM) highlighted and retained temporarily for
a task. WM can also be involved in prediction-making as the posterior belief p(s|o), directly indicating the latent causes
s of sensory input o.

After the prediction is made, it has to be maintained for a brief period to facilitate tasks later on. One piece of evidence
that predictions are maintained in WM comes from the study performed by [Zhang et al.|[2019]. In the experiment,
mice are motivated to explore novel environments in a T maze, which requires them to remember the arm they went to
in the sampling phase and to go to the opposite arm in the trial phase. It was shown that brain oscillations indicating
prediction errors appeared after a delay period in WM tasks when the mice chose an alternative route over the one they
chose during the initial phase. This suggests that the prediction about the route mice chose was maintained in the WM
and resulted in a prediction error when an unexpected outcome appeared.

In active inference, predictions are also made on actions in order to reach the goal (preferred observation o|C') in the
future by minimising expected free energy G (one can refer back to Equation[9]to see how

G

is computed). This is supported by current inferred states maintained in WM in order to predict the future outcome of
different actions. One can see from Figure 5| of how inference of current state affect the prediction about future state by
affecting the generative model p(o, s).

4.2 Prediction errors

In PC predictions of the sensory input and actual sensory inputs are compared, from which prediction errors are
generated and propagated upward the information flow (Figure[6)). The prediction errors help with updating beliefs
about the state of the world, which is similar to what happens in WM updating (Section 2] and Figure 2). In a model for
event perception, [Radvansky and Zacks|[2011]] (see Appendix A for details) proposed that the event model in working
memory is updated based on prediction errors. It is assumed that a threshold must be surpassed for this update to occur.
When prediction error inputs are transient or fall below this threshold, the event model remains dominated by prior
information and is not updated. The connection between prediction errors and WM is also shown by neurobiological
studies where dopamine activity encodes both prediction errors and WM [Sarno et al.|[2022} |Yu and Friston, 2014]].

5 Answering four questions about WM with PC

5.1 WM maintenance and updating

* Question: How is working memory maintained and updated?

Several studies have proposed that PC can support flexible updating of WM. That is, depending on how much a stimulus
is anticipated, WM will be either maintained or updated. In the previous section, we introduced that PC can serve as an
implementation of Bayesian inference. Under this setting, one can see WM as the inferred state of the world, which is
maintained temporarily for predicting future states and updated as new observation is made (see section [3.1I). Below we
will give several examples of how this can happen.

In the generative models of event perception proposed by Kuperberg [2021]], the event model is the sequence of already
observed events containing the temporal-spatial information of the events. The event model is thought to be held in
WM, providing context for predicting future events [Kuperberg, (2021} Radvansky and Zacks, |2011]. E]The event model
can be changed when prediction errors exceed a threshold, i.e. a gating mechanism, which explains WM updating. This
gating mechanism helps with fighting against noise and can be realised by phasic dopamine regulation in the brain
which was said to respond to only salient unexpected events [Redgrave et al., [2008|.

To account for the selective updating of WM, [Yu and Friston| [2014] proposed that WM emerged as beliefs of the
states of the immediate future. Under this assumption, WM updates can be explained by the switching of anticipatory
evaluation about a set of prior beliefs. [Yu and Friston|[2014]] performed an experiment to investigate how anticipation
modulates WM update and maintenance. They designed a task which is similar to the one described in[10.2] where

3For those who are interested in more details of event models and there relevance to modelling WM in PC, please refer to
Appendix A for a summary of the model of event perception.
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subjects need to keep visual objects in WM and respond to probe cues. In particular, he added an anticipatory/ predictive
cue (see Figure[2) at the beginning of the trial to indicate whether there would be an update of the initial stimuli later in
the trial. This is to induce anticipation about what comes next and to test whether WM performance will be affected by
the anticipation. They collected fMRI data from the participants during the task performance.

The results of | Yu and Friston|[2014]] support the idea that WM follows hierarchical inferences in the brain. Specifically,
the results demonstrate that top-down anticipation can modulate WM to maintain or update information. Sustained
neural activities representing WM were found to be associated with the anticipatory set, which is regarded as the signal
of predictive processing. [Yu and Friston| [2014]] furthered his investigation to find plausible cortical message passing in
WM network for implementing hierarchical inference. Using dynamic causal modelling (DCM), the authors tested
hierarchical cortical organisations against fMRI data. The results are consistent with the message-passing scheme
proposed by PC framework, in which anticipation is supported by top-down connections while surprise is mediated via
bottom-up connections (where the authors assumed that DCM performed this test). Furthermore, the authors identified
that the dopaminergic midbrain and the striatum were associated with anticipation and thus played a role in WM
updating. Those results provide anatomical grounds for the implementation of PC during WM tasks in the brain.

One step forward is the model of saccadic control proposed by [Parr and Friston [2017]E] The model purposes working
memory to be the change of posterior probability of the hidden state (p(s|o, 7)). The dynamics of WM can therefore be
understood as the process of evidence accumulation. Specifically, when new evidence shows up, the posterior is updated
(Equation [2), reflecting a WM update. When a participant is shown a retro-cue of a scene that would probably be
tested (see Figure[2)), the uncertainty about which scene to be tested is reduced, and the posterior of the corresponding
hidden state is updated where the posterior probability of the cued scene increases. When there is no new evidence, for
example, during a delay period, the inference process still continues and the posterior remains the same. This allows
WM to be maintained. Thus, in the context of goal-directed behaviour, PC naturally explains WM maintenance and
updating such that when a state is of relevance to a given goal, predictive processing would be activated and keep the
state representation up-to-date.

This WM updating mechanism differs from the event model by Kuperberg [2021] in that it did not impose a threshold
for the updating. If WM is modelled with probabilistic representation, it would continuously change over even minor
evidence. This seems to go against the fact that WM by its nature is robust to distractors to some degree in order to be
maintained at least for a short period of time [Feng et al.,|[2023, [Mejias and Wang, 2022 [Chumbley et al., 2008|] and
needs further consideration. One possibility is that WM is instead represented by the posterior state estimates, which
will only be updated when the accumulated evidence is big enough to change the maximum a posteriori estimate.

During WM maintenance and updating, WM also decays. In the model of saccadic control, |Parr and Friston| [2017]
attempted to explain forgetting by the volatility of the state transition probability. They predict that the more the subject
believes the environment is volatile, the easier/quicker their WM decay.

Finally, research in artificial intelligence (AI) also shows the maintenance and manipulation of WM emerging from
networks incorporating PC. In a study of robotic control, actions are planned through visual simulation for a robot arm
to stack three coloured boxes in a certain order [Jung et al.,2019]. WM is modelled explicitly as a separate module to
preserve long-term visual information to predict future action outcomes. The WM module keeps the information about
the position of boxes and is updated through its connection with other modules of the PC network. We expect that large
Artificial Neural Networks may allow for investigating the role of WM in more complex tasks under PC frameworks in
the future.

5.2 WM and attention

* Question: What is the relationship between attention and working memory and how do they interact?

In the context of PC, attention and WM are both related to predictions. In a thesis on selective updating of working
memory, |Yu and Friston| [2014]] pointed out that attention highlights information to make predictions about the current
situation, while WM, on the other hand, maintains information based on the predictions of its relevance to the future.
Thus the theory by |Yu and Friston|[2014] sets attention and WM apart by temporal characteristics.

The different roles of WM and attention and their interaction in PC frameworks were further clarified by [Parr and
Friston| [[2017]], who proposed an MDP model with active inference (readers can refer back to Section E] for a discussion
of MDP). They divided attention into two different categories. One refers to the gains assigned to certain sensory
channels, as a result of the inferred precision of the states/causes given the sensory channels [Feldman and Friston,
2010]. This is modelled as a precision parameter v, which regulates the degree to which the EFE for each channel

SFor those who are interested in more details of the saccadic control model and its relevance to modelling WM in PC, please refer
to Appendix A for a summary of the model.
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controls policy selection (7(G). Another category of attention refers to salience, which refers to the probability with
which an item will afford an action. In the case of saccadic control, the more salient a location is, the more likely it
will be foveated [Parr and Friston, |[2017]]. This probability is dependent on how it can reduce the uncertainty about the
predicted observations given states, which corresponds to the explorative term of EFE (E |~ [H[p(o | s)]], see also
Equation[I0). So, salience can be seen as sampling the world that maximizes its epistemic affordance. In the case of
saccadic movement, salience would be determined by how much uncertainty can be reduced by making a saccade on a
location. This undercertainty can be modelled as the the belief about a policy, p(7).

Under those definitions, WM, if modelled as the state variable in active inference, clearly has a different role from
attention, yet interacts with it (Figure[7). WM is affected by attention because attention is involved in selecting policies
to collect evidence (new observations) for belief updating. On the other way around, WM (inferred state posterior)
affects attention (precision) by updating beliefs on policies (p()) [Smith et al., 2022|]. This is done through the
minimization of VFE and EFE. We can see that the posterior probability distribution of policies is at the centre of this
reciprocal loop. In other words, action selection establishes the interaction between WM and attention.

q(s|m) — p(s, 0| 7)

——> Positive flow :
.......... » Negative flow
™
Map to p(7)
. . "‘7
To minimize -t

i Y G = (6@~ pir) - (~G)
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Figure 7: Interaction between WM and attention.

p(7): belief about policy; o: observation; s: state; F': variational free energy; g(s|m): estimated posterior given a policy;
p(s,0|m): joint distribution of s and o; G: expected free energy (EFE), G,..or: prediction error of EFE; p(mg): prior
belief about policy; H[p(o|s)]: entropy of p(o|s); v: confidence on EFE (precision). The arrows show how one quantity
affect another (positively or negatively). The brown connections indicate causal map from one variable to another, e.g.
a certain p(7) will lead to a certain o. This figure shows the reciprocal relationship between WM and attention mediated
by policy selection. WM is affected by attention because attention is involved in selecting policies to collect evidence
(new observations) for belief updating. WM (inferred state posterior) also affects attention (precision) by updating
beliefs on policies (p()) [Smith et al.,|2022]]. This is done through the minimization of VFE and EFE. We can see that
the posterior probability distribution of policies is at the centre of this reciprocal loop. In other words, action selection
establishes the interaction between WM and attention.
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5.3 WM capacity limit
* Question: Why does working memory have limited capacity?

A functional explanation of WM capacity limit given the predictive nature of WM was recently proposed by [Trapp
et al.|[2021]]. The authors argued that there is a trade-off between predictive accuracy and capacity/complexity, and
specifically the number of items to retain has to be limited to achieve a certain level of accuracy. This limitation
coincides with the setting of four to six temporal steps into the future for the simulations in deep temporal models
from their study. It was also mentioned that the generalized coordinates of motions (the derivatives of motions, that is
position as the 1st order derivative, speed as the 2nd order derivative etc.) are usually truncated at about the fourth order
for the same reason.

The prediction of the future can be modelled as a random process with the probability of the future event given the
current event being a constant (p(future event|current event) = c¢). It seems intuitive that when we predict further into
the future, the probability decreases, meaning the accuracy of the prediction will also decrease. This set a limitation on
how many steps to take for prediction. Trapp et al.|[2021] argue that if the sequential representation plays a dual role in
both retrospective and prospective memory (more discussion see [6.2), the limitation on prediction accuracy will be
reflected in the number of steps that can be stored for the past and the future.

The assumption provides an elegant explanation to account for both capacity limitations of past and future. Though it
does not seem to be necessary to hold onto the assumption of a MDP to have only one single sequential representation
playing a dual role. If there are two copies of the representation, there should not be a limitation for WM capacity for
past events. This is because the uncertainties about the future have been resolved when observations were made. Also,
the theory of accuracy-complexity trade-off seems to only work for sequential items, but since the current model is
designed only with temporal depth, it does not explain why the capacity limit also applies to parallel items.

To further validate the hypothesis of Trapp et al.|[2021]], researchers should test the link between predictive and memory
capacity experimentally, e.g. by behavioural tests on both predictive and WM tasks. Researchers would then draw
inference as to whether stronger predictive capacity is accompanied by stronger WM capacity. E]

It should also be noted that the WM capacity limit measured in experiments might be a result of a strong violation of
the experimental setting against prior beliefs [Orhan et al.,|2014]. For example, participants’ prior belief might be that
the items presented in different trials are dependent when, in reality, the items across trials are actually independent.
This mismatch leads to biases and inefficiencies in memory encoding and retrieval, thus potentially limiting observed
WM capacity.

Indeed, if WM is seen as a result of Bayesian inference, it will not reflect the observations if there is a strong belief
against the state itself (p(s)), or about the state of the world that it can hardly generate such observations (the likelihood
p(o]s)). The effect can happen more easily in an experimental setting because it can be unnatural, and the experimental
setting is counter to prior beliefs the agent developed in their life. In active inference framework, this may again be
explained as a trade-off between complexity/energy and accuracy (Equation[6), where a large change of belief needed
to account for an observation would require compromises in encoding accuracy.

In summary, PC can explain WM capacity limit in terms of the trade-off between the complexity and accuracy of the
information being encoded. This provides an alternative theory to the slot model[Cowan et al., [2013]], the resource
model [Bays et al.l|2009]] and the interference model [Oberauer and Lin, |2017]] to account for the limited capacity of
WM.

5.4 Hierarchical WM
* Question: Why is working memory hierarchical?

Hierarchical information processing relies on top-bottom interactions. The interaction between top-down and bottom-up
information flow in PC allows comparisons between predictions and sensory inputs and allows for updates of the
internal model. The top-bottom influence of brain oscillations has also been discovered during WM updating, which
coincides with those found for PC [Miller et al., 2018} Zhang et al., 2019].

In a task of visual WM of orientation Berlot and de Lange| [2022]], it was found that the moving dot and the grating
stimuli are both re-coded as line-like representations. This suggests that the stimuli were efficiently coded into a format
that serves the goal of the task, which reflects how PC infers the state of the world from top-bottom interactions (in this
case, the orientation).

7As a side note, more evidence is needed to show that prospective and retrospective WM memories are indeed represented by the
same neural component.
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Framework Task computational roles Variables Neurobiological signa- | References
tures
Active inference Explore-exploit Belief updating p(s|o, ) Neural activation [Smith et al.}|2022]

as p(slo,m) and its
generalised motions

Predictive coding Event perception Event model Not formally defined. | N.A. [Kuperberg| |2021]
Can be thought of as
p(s.0),
Generalised predictive | WM updating task (with | Beliefs about the immedi- | Not formally defined. | Dopamine [Yu and Friston|
coding anticipatory cues) ate future Can be thought of 2014]

coding

alised motions

Active inference ‘WM updating task Evidence accumula- | Not formally defined. | context: hippocampus;lo- | [Berk Mirza et al.|
tion/beliefs Can be thought of as | cations: parietal cortex 2016]
p(slo, )
Active inference WM updating task Evidence accumula- | Not formally defined. | context: hippocampus;lo- | [Parr and Friston,
tion/beliefs Can be thought of as | cations: parietal cortex 2017)
p(s|o, )
Active inference Undefined Bayesian model averag- | p(s]o, ) Matrix thalamocortical | [Friston et al.||[2018]
ing circuits
Generalised predictive | Undefined Belief trajectories p(s|o, ) and its gener- | N.A. [Friston} |2008]

Table 1: Summary of WM modelling in PC frameworks

Studies show that higher-order information bias the inference of the stimulus feature, where top-down conditioning
may play a role in maintaining or restoring WM over noise. In a psychophysical study by Brady and Alvarez [2011]],
the memory of the size of individual circles presented was found affected by the mean size of all the presented circles,
indicating multiple levels of abstraction. In another psychophysical experiment,|Luu and Stocker|[2021] showed that
categorical and detailed feature information are both stored in WM, which can be manipulated separately.

Hasson et al.|[2015] proposed a hierarchical WM framework where the temporal receptive window increases with
hierarchy, and thus higher areas process information at a larger timescale. There is also some neuroscientific evidence
for the existence of this framework such that there is the hierarchical topology of WM according to the measurement of
fMRI, electrocorticography and single-unit recording during auditory and visual processing of temporal information
[Honey et al.,|2012| [Lerner et al., 2011} [Hasson et al., [ 2008|].

Those different levels of WM representations can naturally fit into hierarchical PC, with WM at each level being the
result of state inference at that level. It can explain the effect of top-down conditioning on WM by the influence of
hidden states at a higher level to the hidden states at a lower level.

6 Modelling WM in PC

This section is aimed at providing guidance and stimulating discussions on modelling WM in PC. We first introduce
WM as posterior beliefs and summarize the ingredients that are important in PC frameworks to model WM. Then we
discuss a few open questions on modelling choices, together with a comparison to some mechanistic models of WM.
We then discuss how modelling WM in PC frameworks can contribute to applied topics such as better schizophrenia
treatment and more robust Al Finally, we talk about the general limitations of PC frameworks.

6.1 Three ingredients

Table [I] contains modeling strategies to account for WM using PC, conceptually or formally. In summary, WM is
often modelled as part of the existing PC, for example, using state variables. This means that the maintenance of WM
during a delay period is not a cause of active retention but is a side product of inference processes. This may seem
counterintuitive because researchers often presume that the representation of the sensory input will fade away right
after receiving a stimulus, and thus we need a mechanism to actively support WM maintenance. However, under PC
framework, inference itself is an active endeavour which continuously happens. In such a framework, not only is a
changing stimulus an input, but a unchanged stimulus also is. When a un-changed stimulus is presented, the belief
remains the same after the inference, therefore manifested by a persistent activity.

If we see perception as an inference of a moment, what we need to distinguish WM from perception is that WM is
a lasting inference process that is driven by a goal. This is in contrast with some biophysical WM models using a
dedicated canonical neural circuit to explain persistent activity [Curtis and Spraguel [2021]]. The passiveness of WM
maintenance is consistent with the emergent theory of WM, where WM is an emergent property of other functions of
the brain.
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Fig 8 contains a synthesized example of the PC framework that can be used to model WM, where three ingredients are
included, which are temporal depth, goals and hierarchy. The temporal depth is modelled as chain of states s,,; the
goals are modelled in the expected free energy G the hierarchy is modelled as two levels of MDPs where the top one
guide the bottom ones.

Level 2

Figure 8: A deep temporal MDP framework to model WM in PC. Two levels of inference are shown in the graph.
G: expected free energy, where preference is integrated (see Equation J); 7: policy; D: prior; s: state posterior; B:
transition probability; A: likelihood; o: evidence. The superscripts indicate the level of inference. The subscripts
indicate the time points.

6.2 Ingredient 1: Temporal depth

One of the most important ingredients in this framework is to accommodate temporal depth. As an example, this can
be done by using a Markov chain to model the accumulation of evidence. Modelling temporal depth also enables the
modelling of both retrospective and prospective influence on WM.

By modelling WM in PC frameworks, both beliefs about the past and future are relevant. Perception is only about
inferring the state given the current observation. Working memory, on the other hand, is goal-directed, which requires
inferring the states about either past or the future given the current state. To make this more concrete, imagine a situation
where you came to a new place at night and stayed until the morning. When the sun rose, you saw that there was a tree
in front of you. Now you might infer that there was probably a tree the night before and there will probably be a tree in
the future. Depending on whether the task is to keep a diary about yesterday or climb the tree, the belief about the past
or the future will be maintained in your working memory. One can refer to the saccadic control task from [Parr and
Friston|[2017]] as an experiment on the belief about the past and the explore-exploit task in [Smith et al.,[2022]] as an
experiment on the belief about the future. In a formal model, this means working memory at ¢ = 0 can be the state
variable att = 1 or ¢ = —1. In generalized PC, this is pushed one step forward, where what is inferred is not a state at a
single time point, but its trajectory.
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6.3 Ingredient 2: Goal-directed behaviour

Working memory (WM) plays a crucial role in enabling goal-directed behaviour by retaining information that is relevant
for selecting future actions. In the context of active inference, goals are formalised as preferences over outcomes, and
the minimisation of expected free energy (EFE) drives action selection to satisfy these preferences. WM facilitates this
process by maintaining beliefs about the current and future states of the world that are relevant for policy evaluation.

In this framework, WM is not merely a passive buffer, but an active inference mechanism supporting decision-making.
Specifically, WM retains beliefs about the hidden causes of sensory input (posterior over states), which in turn determine
the expected outcomes of different policies. Policies that minimise EFE are selected based on both epistemic value
(uncertainty reduction) and pragmatic value (goal satisfaction) (see Equation [J).

This formulation implies that WM content is modulated by task demands. For instance, when a preferred outcome
changes, the belief state held in WM needs to be updated accordingly. This dynamic was illustrated in the WM updating
models discussed in Section[5.1] where WM content changes based on predictive cues indicating potential updates.

Furthermore, dopaminergic signalling, modelled as precision over EFE, plays a key role in modulating the salience
of goals and thus the content of WM [Yu and Friston| 2014} |Smith et al., [2022]]. This establishes a link between
the motivational significance of an outcome and the selective retention of information in WM, enabling adaptive
goal-directed behaviour in uncertain environments.

Thus, in a PC framework, WM is inherently teleological: it encodes beliefs in service of expected outcomes, constantly
shaped by the inferred value of information relative to future goals.

6.4 Ingredient 3: Hierarchical structure

A defining feature of WM is its ability to represent information at multiple levels of abstraction. This hierarchical
organisation aligns naturally with the hierarchical structure of predictive coding (PC), where inference is distributed
across multiple layers corresponding to increasing temporal and conceptual abstraction.

In PC, higher levels encode slower dynamics and more abstract features, while lower levels encode faster, more concrete
sensory details [Friston, 2008} [Hasson et al., [2015]. WM representations can emerge at any level of this hierarchy,
depending on the task. For example, in visual WM tasks, early visual cortex may maintain low-level sensory details,
while prefrontal regions may encode categorical or semantic information relevant for decision-making [Luu and Stocker]
2021, Berlot and de Lange, [2022]].

This architecture allows WM to flexibly transform between different representational formats, such as between visual
and verbal codes, depending on contextual demands. Moreover, top-down influences from higher levels can stabilise
lower-level representations, helping to maintain WM in the presence of noise or distractors [Zhang et al., 2019, Brady
and Alvarez, [2011]].

Experimental findings showing that WM contents are shaped by higher-order knowledge—such as ensemble statistics
[Brady and Alvarez,[2011]], categorical context [Luu and Stocker, |2021]], or task goals [Berlot and de Lange, 2022]—can
be accounted for by hierarchical message passing in PC. Under this view, WM is not a fixed capacity store, but a
dynamic inference process where representations at different levels of the hierarchy constrain and refine each other.

Importantly, this hierarchical structure also supports generalisation and abstraction. For instance, learning a schema at a
higher level can facilitate WM performance on related but novel tasks by reusing abstract predictive structures.

Therefore, modelling WM within hierarchical PC not only explains behavioural and neurophysiological findings, but
also provides a principled account of how WM can bridge perception and action across multiple timescales and levels
of abstraction.

6.5 WM as posterior belief in active inference

To model WM in PC, another important question we might ask is what variable it represents in a PC framework. In
most of the models we review here, WM is modelled as the posterior belief about states of the world (p(s|o)). This
modelling choice can reproduce behavioural results and neural activities during the tasks, as mentioned previously
[Honey et al., 2012, Lerner et al.l 2011} |Hasson et al., 2008]]. It also explains how WM is tightly incorporated into
goal-directed behaviours. That is, in order to reach a goal (preferred observation), an agent would need to first gain
some information about the state of the world. For example, if one needs to grasp something in a dark room, one
needs to first turn on the light to know where the item is (the state of the world). Thus WM emerges from a process of
evidence accumulation to reduce uncertainties about the state of the world.
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In the case of saccadic control, eye movements are controlled to reduce the uncertainty about what was initially
presented, e.g. to allow the participants to choose the correct cue at the end of an experimental trial. The beliefs about
hidden states of initial scenes are updated following the observations after selected saccades to reduce the uncertainty
about the states.

7 Open questions

Although many studies discussed the relationship between WM and PC, formal models are not often presented, leaving
challenges and opportunities for future research.

7.1 Is WM a separate component?

The first remaining question is whether to model WM as a component separated from the inference process. This
question has raised a debate between the modular and emergent view of WM [Postle}, 2006]]. Most of the models we
previously reviewed do not separate WM from the rest of the components of the PC. Very often, it is modelled as the
traces of the state variables. Some of the other probabilistic models of human WM incorporating Bayesian inference,
instead, model it as a separate module [Sims et al.,|2012]. Models in artificial intelligence also tend to model WM as a
separate component [Jung et al.,|2019]]. As a long debating question, this deserves further attention. For a review see
Hasson et al.|[2015]].

7.2  Which variable represents WM?

Assuming WM is not modelled separately, the next question is what variable represents WM in PC exactly. The answer
might sit in between two candidates: posterior probabilities or predictions. A fundamental difference between classical
predictive coding and active inference is that classical predictive coding estimates predictions using point estimators
(see Equation [I)), whereas active inference estimates full posterior distributions over latent states (see equations in

Section[3.2)).

If working memory (WM) is represented by posterior distributions, its updates are continuous, dynamically reflecting
graded changes in sensory input. This is compatible with the continuous nature of synaptic plasticity [Miller et al.,
2018]]. In contrast, if WM is represented by discrete point estimates, updates may be more categorical—occurring
only when environmental changes exceed a certain threshold. This thresholded updating is consistent with bifurcations
observed in attractor models of WM, where state transitions occur abruptly once critical inputs are reached [Feng et al.}
2023|.

Another possibility is that WM is represented by prediction errors, the differences between sensory inputs and predictions.
For future work, researchers could compare the activity patterns of the three variables (point estimator predictions,
posterior distributions and prediction errors) during a task using existing models and evaluate their differences more
systematically. That work could be followed with a more intense review of current experimental measurements of
behavioural and neuronal activities during WM, so that researchers can compare the simulation results from PC models
with the experimental measurements to establish a map between the variables in PC and different measurements.
Researchers might also want to investigate this question from the perspective of neural coding (a review see Ma and
Jazayeri| [2014])) to see which assumption is more biologically realistic.

In the end, it is possible that WM is a multifaceted entity represented by all the above-mentioned variables (point
estimator predictions, posterior distributions and prediction errors). For example, the change of prediction may underlie
the sparse spikes observed in experimental data and the continuous state updates may underlie the trace of synaptic
weights. PC may provide a solution to resolve the conflict between different theories of WM by integrating different
neural and bio-chemical representations observed during WM task (Table 2)).

Finally, although most of the literature reviewed here only pays attention to the beliefs about the state of the world, we
have to remind ourselves that all variables being inferred can be part of WM. For example, although the volatility of the
world often serves as a hyper-parameter, it can also be inferred and updated during a task, which can be maintained in
WM.

7.3 Where in the hierarchy?
Another question that requires further attention is where in the hierarchy is WM maintained. Currently, different studies

show different results. For example, [Luu and Stocker| [2021]] show that WM is represented at multiple levels while
Berlot and de Lange| [2022] show WM represented at only the early sensory area. Since WM facilitates action planning,
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model ‘WM representation Literature PC account Tensions Further integra-
tion
classical attractor model population persistent [Wang| 2001]] state variables attractor WM has no pre-

steady-state firing rates

diction error layer

bump attractors

cross-neuron bell-shaped
steady-state firing rate

[Wimmer et al.|[2014]

state variables

attractor WM has no pre-
diction error layer

continuous states

distributed
model

attractor

population  persistent
steady-state firing rates
across cortical hierarchy

[Mejias and Wang} 2022]

state variables; hierar-

chies

attractor WM has no pre-
diction error layer

silent WM model

brief bursts of spikes
and temporary change of
synaptic weight

[Mongillo et al.l [2008|
Triibutschek et al.}[2017]

prediction updates and
state variables

PC cannot account for
refreshing of synaptic
weights; NOWM has no
PDE

silent WM network oscil-
lation model

brief bursts of spikes
and temporary change of
synaptic weight

[Miller et al.} 2018

prediction updates and
state variables; top

PC cannot account for
refreshing of synaptic
weights; NOWM has no
PDE

linear WM or “models
without feedback”

population firing rates

[Goldman} 2009]

LWM has no feedback
and PDE

models  with cortico-
thalamic interactions

population firing rates

[Jaramillo et al.}|2019]

attentional ~ regulation
(cortical-thalamic path-

ways)

Table 2: PC-WM model and mechanistic/biophysical models of WM

it is possible that the level of WM representation is dependent on the length of planning. This implies that in tasks
requiring planning over a longer period of time, WM is represented higher in the hierarchy so that the memory can be
more robust and thus survive noise for a longer time period. The current PC framework models neuronal activities at all
levels. For future theoretical work, researchers might need to envision a mechanism to allow neural representation at
selected levels.

7.4 What are the applications for WM in PC? Brain disorders and more robust artificial neural networks?
Because of the important role of WM in both human cognition and artificial intelligence, we expect the efforts of
formalizing the link between WM and PC would also help with developing tools to understand and tackle WM-related
brain disorders and lead to future Al that can be more human-like or/and be more efficient in solving engineering
problems.

There are many brain disorders accompanied by working memory deficits, for example, schizophrenia [Eryilmaz et al.,
2016] and ADHD [Ortega et al.,[2020]. Since PC can model a variety of cognitive and motor functions, if we model
WM with PC, we can get a more holistic understanding of the cognitive mechanism behind brain disorders with WM
deficits. This may help with developing better psychological interventions. With PC’s specialization in representing
hierarchical inference of the brain, it can be more capable of modelling complex tasks than some pure mechanistic
models based on first principles, such as the ones mentioned in Table. [2 We can therefore using this advantage to
identify more psychological traits of the brain disorders to help with diagnosis and monitoring of the disorder. Another
advantage of PC is that it can be easily mapped to neuronal implementations. By establishing neuronal message-passing
schemes of PC models, we can map critical parameters and connections in the models to brain chemicals and structures,
to help with developing medical or surgical treatment.

In the field of artificial intelligence (AI), deep neural networks have been proven a powerful tool in visual object
recognition. However, deep neural networks suffer from a sensitivity to (a small amount of) noise in the inputs [Zheng
et al.| [2016[]. The idea of maintaining a stable WM through a prediction-error-gated mechanism might help Al to
achieve more robust performance. Since PC is designed to make inferences in a noisy environment, it should help with
this issue. Modelling WM in PC would potentially help Al to deal with uncertainties that bear temporal complexity.

8 Limitations with describing WM with PC

In this review, we present possible explanations of WM provided by PC. However, one needs to be reminded that PC
theory itself has its own limitations.

To begin with, whether prediction errors can be represented by neural systems is yet to be concluded, although there is
increasing evidence of this phenomenon [Mikulasch et al.|[2023]]. Since the exact neural implementation is not the focus
of this paper, readers interested in the schematics of neural implementation can refer to work by Rao and Ballard| [[1999],
Smith et al.|[2022], Kogo and Trengove|[2015]], van de Laar and de Vries|[[2019]). For further thoughts, one might look
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into probabilistic neural coding theories by Ma and Jazayeri [2014]. To the present authors, it is also doubtful how al/
hidden states can be represented by neuronal activities, considering there can be a large amount of hidden states.

There may also be limitations in terms of the scope that PC can apply to in explaining a cognitive phenomenon. For
example, Ransom and Fazelpour| [2015] listed three problems of PC accounts for attention. Specifically, they argued
that although PC can explain spatial attention, it cannot explain feature-based attention. They also pointed out that PC
may not explain non-perceptual attention such as attention to one’s own thoughts. Lastly, they mentioned PC cannot
explain affective salience or attention in high-cost situations. Those problems likely also hold for how PC accounts for
WM as well. Since we only inspected a few examples of working memory tasks, it is possible that some aspects of WM
cannot be covered by PC.

9 Conclusion

In this literature thesis, we reviewed how working memory (WM) can fit within predictive coding (PC) frameworks and
demonstrated how this arrangement can help with answering four specific research questions on WM:

1. How is working memory maintained and updated?

2. Why does working memory have limited capacity?

3. What is the relationship between attention and working memory and how do they interact?
4. Why is working memory hierarchical?

To answer the questions, we introduced the Markov decision process with active inference as a PC framework for
implementing variational Bayesian inference over time. Both theoretical analysis and experimental evidence surrounding
this idea have provided important insights for answering those questions about WM.

It is shown that by treating WM as posterior beliefs, we can explain WM maintenance and updating by how beliefs
are updated in variational Bayesian inference over time. When WM is seen as predictions/inferred states, the balance
between stability and flexibility can be explained by the gating of evidence accumulation on the change of predictions,
where predictions are only updated when the posterior probability of one state is pushed above another.

PC explains the relationship between WM and attention through their interactions with action selection. Actions
selected by an agent take effect on the environment, leading to evidence which is used to update WM as posterior beliefs
about states. With regard to attention, the prediction errors of selected actions regulate the precision of the sensory
channels. Meanwhile, the evidence resulting from selected actions updates the likelihood distribution, which changes
the salience e.g. of the locations in a visual field. Reciprocally, WM and attention influence action selection through
VFE and EFE respectively, therefore, forming a cycle where WM and attention affect each other via the process of
action selection.

The capacity limit of WM can be explained by the trade-off between accuracy and complexity in predicting the future.
That is, given the evidence, the trade-off between how well the belief predicts the sensory input and the amount of
energy required in belief updating to achieve such accuracy. In the case of a MDP, this corresponds to the limitation to
the number of time steps one can include to ensure a certain level of prediction accuracy.

Finally, hierarchical PC naturally explains the hierarchical organisation of WM by its hierarchical inference architecture,
where WM at different levels of abstraction maps to posterior beliefs at different levels of inference.

To summarize, WM can be modelled in an active inference framework which incorporates temporal depth, goals and
hierarchy. With those ingredients, WM supports goal-directed behaviour through the minimization of variational free
energy and expected free energy. In this framework, WM is part of the inference architecture, instead of being a
separate component. There are several candidate variables in the framework to represent WM. For example, WM can
be seen as belief updating/evidence accumulation about the hidden state of the world or the predictions of the incoming
observations in the past and future. Activity patterns of different variables accommodate and account for different
neural and bio-chemical representations observed during the WM task, which may resolve the conflict between different
mechanistic theories of WM. Although the evidence shown here explains WM quite well, it should be noted that we
only reviewed a few specific WM tasks, such as event perception and saccadic control. We purposefully only looked at
these tasks to keep the review constrained to a few specific examples. For future work, a diversity of WM tasks needs to
be taken into consideration in order to generalise the conclusions made here and refine the proposed framework.

Apart from providing scientific insights about WM, modelling WM in PC frameworks also provides potential devel-
opments of new computational models of human and artificial working memory, leading to better treatment of brain
disorders with WM deficits and Al which is more robust to noises.
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10 Appendix A Two models of WM with PC

There are two PC models explicitly incorporating WM, which we use to explain how PC explain WM. Readers who
would like to gain a more holistic understanding of the relevant background can refer to this appendix.

10.1 A model of event perception

When a set of visual events unfolds in front of our eyes, being able to predict what happens next is very useful to
comprehend the events with speed and accuracy. For example, when a woman pours water into a cup, we can infer that
she may want to make tea and therefore predict the next event, such as adding milk. Being able to predict sensory input
allows us to quickly change our behavior.

Kuperberg|[2021]] proposed a hierarchical generative framework with three levels to model event perception. WM is
represented in the second level of the model containing the event model for making predictions of future states. The
event model represents a series of events that have happened to provide the context for making predictions about the
next event [Radvansky and Zacks| 2011].

The model assumes that schema-relevant knowledge are inferred through the goals at the top/third level to constrain
the resultant predictions. For example, when the higher level infers that the subject is making tea p(making tealo) is
highest, then WM receives tea-relevant event clusters, from which single events at the bottom/first level are generated.
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The three hierarchies are only conceptual and there is no one-to-one map to brain structure. If needed, such a model can
be expanded to more hierarchies.

10.2 A model of saccadic eye movement

Saccadic control can also be modelled with active inference. This model assumes that during saccadic eye movement,
an agent selects a saccadic target based on the predictions about the outcomes of their movement. This then supports or
denies their beliefs about hidden states of the world given an observation.

Parr and Friston| [2017]] proposed a model of saccadic control based on a MDP, similar to the framework shown in
Figure 8] This model assumes the dependency of the variables as the following: the outcome of each movement is
dependent on a hidden state in the present time point, that hidden state depends on the policy and the hidden state at the
previous time point. In such a MDP, the agent needs to minimize free energy over time. In order to do that, they need to
choose a policy which minimizes their expected free energy.

The authors simulated the model on a specific WM task. In this task, participants are initially shown three pairs of
scenes and instructed to remember one specific pair. After this initial encoding phase, a retrocue is presented, indicating
which of the initial scenes is most likely to be tested. At the end of the trial, participants are shown two scenes and must
identify which one was presented at the beginning. Throughout the trial, saccadic eye movements play a critical role in
reducing uncertainty about the initially presented scenes, thereby improving performance. The authors model this task
by treating the set of initial scenes as a hidden state and interpret the retrocue as an opportunity for belief updating.
This theoretical framing allows the model to capture how participants integrate prior information and sensory evidence
to guide memory-based decision making.

In this model, WM is interpreted as the accumulated evidence in the hidden state unit.The posterior probability of the
presented initial scenes (the hidden state), changes with the accumulation of evidence. It is updated when the retrocue
appears and maintained the same value during the delay period when there is no further input. This corresponds well
with the update and maintenance of WM. The authors developed a neuronal message-passing scheme for the model
[Parr and Friston, 2017, [Friston et al., 2018]], grounded in the mathematical formulation of variational free energy
minimisation. This scheme maps belief updating operations—such as inference over states and policy selection—onto
biologically plausible circuit motifs, including forward (bottom-up) and backwards (top-down) message passing
between hierarchical levels. Crucially, the message-passing architecture incorporates cortical and subcortical structures
thought to underlie WM processes, such as the prefrontal cortex and basal ganglia loops. The temporal dynamics of the
simulated hidden state units, which represent beliefs about the initial scenes, closely resembled delay-period activity
observed in electrophysiological recordings from monkey prefrontal cortex during WM tasks. This qualitative match
supports the model’s potential as a mechanistic account of WM in the brain.
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